
Design and Evaluation of "The Missing CS Class," A Student-led
Undergraduate Course to Reduce the Academia-industry Gap

Grant Gilson, Stephen Ott, Noah Rose Ledesma, Aakash Prabhu, and Joël Porquet-Lupine∗
{ggilson,stott,roseledesma,aakprabhu,jporquet}@ucdavis.edu

Department of Computer Science
University of California, Davis

Davis, California, USA

ABSTRACT
One notable part of the academia-industry gap is the deficiency in
computing ecosystem literacy, which may result in college gradu-
ates exhibiting little technical knowledge of software development
tools and practices commonly used in industry. This paper presents
our experience developing and teaching "The Missing CS Class,"
the student-led 1-unit course that we created at our university to
address computing ecosystem literacy. This course primarily tar-
gets lower-division students and, based on our observations as peer
tutors, covers four common but crucial gaps in technical knowledge:
(1) Unix-like command-line environments and tools, (2) Software
testing and debugging, (3) Scripting, and (4) Version control. Based
on the collected feedback from two consecutive offerings of this
course during the winter and spring quarters of 2021, most sur-
veyed students reported having increased their self-efficacy on all
course topics and incorporated them into their software develop-
ment workflow.

To benefit the community at large, we have published all the
lecture materials online at https://missing.cs.ucdavis.edu.

CCS CONCEPTS
• Applied computing → Education; • Social and professional
topics → Computer science education.

KEYWORDS
Computer Science Education; Academia-industry Gap; Student-led
Undergraduate Course; Computing Ecosystem Literacy
ACM Reference Format:
Grant Gilson, Stephen Ott, Noah Rose Ledesma, Aakash Prabhu, and Joël
Porquet-Lupine. 2022. Design and Evaluation of "The Missing CS Class," A
Student-led Undergraduate Course to Reduce the Academia-industry Gap.
In Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2022), March 3–5, 2022, Providence, RI, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.3499422

∗Gilson, Ott, and Rose Ledesma are the undergraduate students who equally con-
tributed in defining the course topics, creating the course materials, teaching the
course twice, and writing an early draft of this paper, under the active guidance of
Prabhu and Porquet-Lupine. The final version of this paper was written by Porquet-
Lupine.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9070-5/22/03.
https://doi.org/10.1145/3478431.3499422

1 INTRODUCTION
In traditional introductory computer science courses (i.e., CS1 and
CS2) instructors typically focus on fundamental topics such as
programming, algorithms, and data structures, in accordance with
official computing curriculum guidelines [5, 8]. While this approach
establishes a core of applicable knowledge for students, the training
of practical skills, such as Unix-like command-line tools, testing,
debugging, etc., often tends to be neglected. This deficiency in com-
puting ecosystem literacy contributes to reinforcing the academia-
industry gap [14–16], as it may result in students with solid abilities
to solve well-formatted programming problems but little technical
knowledge of software development tools and practices commonly
used in industry.

This widening gap in technical knowledge became apparent to
us during our experience as undergraduate peer tutors. We assisted
plenty of students who were familiar with the concepts of com-
puting ecosystem literacy but showed a lack of practical skills and
self-efficacy [17]. For example, students would understand that a
Makefile can efficiently automate the building of their code, but
were too afraid to part from the plain "compile-and-run" button
of their graphical IDE. Further informal interactions with upper-
division instructors also revealed numerous complaints that stu-
dents lacked proficiency with Unix-like environments and tools.
To confirm this issue’s predominance throughout our CS under-
graduate population, we conducted a survey in February 2020 and
collected 220 student responses. Among them, only two-thirds of
respondents reported being confident in their ability to navigate
a filesystem via a command-line interface, and less than half re-
ported being comfortable with more advanced utilities such as
grep or find. Similarly, only a third reported practical knowledge
of shell scripting. However, it appeared that students recognized
their non-proficiency in computing ecosystem literacy as a serious
issue, since an overwhelming ~90% of respondents expressed an
interest in taking a course that would focus on it.

This paper presents our experience developing and teaching "The
Missing CS Class," the student-led 1-unit course that we created
to address computing ecosystem literacy. This course primarily
targets lower-division students and, based on our observations
as peer tutors, covers four common but crucial gaps in technical
knowledge: (1) Unix-like command-line environments and tools,
(2) Software testing and debugging, (3) Scripting, and (4) Version
control. The student feedback from two consecutive offerings of
this course during the winter and spring quarters of 2021 was very
positive. Most surveyed students reported having increased their
self-efficacy on all course topics and incorporated them into their
own software development workflow.

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCSE 2022, March 3–5, 2022, Providence, RI, USA.
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9070-5/22/03.
https://doi.org/10.1145/3478431.3499422

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

467

https://missing.cs.ucdavis.edu
https://doi.org/10.1145/3478431.3499422
https://doi.org/10.1145/3478431.3499422
https://creativecommons.org/licenses/by/4.0/

This paper is organized as follows. First, in Section 2, we provide
an overview of related courses from other institutions, including
their goals and methodologies. Then, in Section 3, we explore the
principles of our course design. In Section 4, we present a detailed
layout of our course. We discuss the course offerings and end of
quarter survey results in Section 5. Finally, we conclude and suggest
potential next steps in Section 6.

2 RELATEDWORK
While most institutions offer core courses that introduce some com-
puting ecosystem literacy, it is typically covered as supplementary
to themain course topics. For example, the introduction to Unix-like
environments and associated tools may be a single lecture or lab in a
computer systems course [4, 18], as may be the introduction of unit
testing in a programming course [6, 13]. The few existing courses
which we found that focus exclusively on computing ecosystem
literacy tend to be student-run and not made a degree requirement
for undergraduates, exactly like ours.

In January 2019 and 2020, students at the Massachusetts Institute
of Technology (MIT) taught "The Missing Semester of Your CS
Education" [1]. This class, which greatly inspired our initiative,
was offered during MIT’s "Independent Activities Period", a short
one-month semester featuring a variety of student-run classes. It
aimed to provide a hands-on introduction to tools and techniques,
topics that theseMIT students also felt were insufficiently addressed
by their school’s curriculum. While some of the contents covered
in this class overlap with our course, they seem to favor breadth
over depth. For example, the class brushes on multiple additional
topics such as security and cryptography, build systems, continuous
integration, etc. In contrast, our course dives deeper into software
testing and debugging, and does not limit itself to shell scripting.

While initially created by an undergraduate student in 2011,
Carnegie Mellon University’s "Great Practical Ideas for Computer
Scientists" [3] has become an official 2-unit elective course generally
offered once a year. The course presents "the common tools that
computer scientists use," which includes Vim, Bash, Git, and LATEX.
It also offers additional workshops and talks outside of the required
class material. There is again some overlap between this course and
ours, especially regarding some of the presented tools. However,
while this course spends more time on certain tools (e.g., 2 weeks
on Vim), our course also covers software development techniques
and practices, such as an entire 3-week module on software testing
and debugging.

Kendon and Stephenson [9] described a six-hour non-credit
course that runs on a single day, which aims to better prepare
incoming first-year students for introductory CS courses at the Uni-
versity of Calgary. In addition to providing hands-on instruction
on the basic use of the command-line interface, this mini-course
also covers other practical and soft skills. For example, it shows
students how to write effective emails to teaching assistants or
course instructors, and presents different valuable services that the
university offers. In comparison, our course provides a broader,
deeper exploration of software development tools and techniques.

3 DESIGN PRINCIPLES
At our school, student-led CS courses are always electives, usually
have a low unit count, and only offer a Pass/No Pass grading option.
These characteristics typically make them rather low-stakes, which
means that students enrolling in such courses often do so out of
genuine interest. Wanting to capitalize on this curiosity-driven
motivation, we aimed to design our course to be as accessible, low-
burden, and hands-on as possible.

First, we ensured that the course would be accessible to students
right after the introductory sequence’s first course (i.e., CS1), as our
goal is for students to develop good software development habits
early. Then, we opted for the class to be one unit, the lowest possible
unit count, to guarantee that the workload would not interfere with
students’ other coursework; one unit represents 1 hour of weekly
lecture and assumes up to 3 hours of additional weekly homework.
Our course lectures are often a mix of slides, to present and dis-
cuss the topic(s) at hand, and demos, to show how the discussed
concepts can be applied. For the most part (see details in next sec-
tion), the course homework offers students hands-on experiences
with the topics studied in lecture. The homework assignment for
a particular week is made available right after the weekly lecture,
and students are given one week to complete it on their own. To
maximize the rate of homework completion, student submissions
are autograded whenever possible, in which case students know
their score immediately, even before the submission deadline.

Our school is on the quarter system, which makes for exactly
10 weeks of instruction. In order to balance breadth and depth,
we decided to divide the course contents into three equally-sized
3-week modules, each of which dives into a set of related topics.
We initially left the 10th and last week open to allow for unforeseen
issues. The course topics were determined by three main factors:
(1) Observations of the undergraduate curriculum from our own
points of view as undergraduate students, (2) Experiences as peer
tutors while assisting other undergraduate students, (3) Informal
discussions with upper-division instructors whom we had heard
complain about technical gaps they felt students exhibited. We
quickly established that the central struggle point regarding com-
puting ecosystem literacy was the students’ general lack of famil-
iarity with the command-line interface, which is why we designed
our course with this aspect at its underlying core.

The first module focuses on the command-line interface (CLI) by
introducing students to Unix-like environments and common utili-
ties. Based on our observations, students are usually familiar with
the idea of the terminal after CS1 and know very basic commands
such as cd and ls but are often too intimidated to use the terminal
regularly. The main goal of this module is to empower students to
interact with Unix-like computer systems via the CLI. Topics range
from basic (e.g., navigating the filesystem, interacting with files,
using options to customize commands) to advanced (e.g., input and
output redirections, composing complex commands using pipes).

The second module addresses software testing and debugging, as
we noticed that students often struggle to detect and troubleshoot
bugs in their code. As with CLI usage, they may receive exposure to
the related concepts in their programming classes but may still lack
the self-efficacy to apply them fully. For instance, if they are taught
how to write unit tests in a prior course, they are not necessarily

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

468

told what constitutes a good test case. Similarly, most students
know how to start a debugger, but they often lack the intuition of
where to place a breakpoint. This module covers software testing,
debugging methodologies, and presents a CLI-based debugger.

The third module is meant to further develop the students’ soft-
ware development practices by presenting scripting and showcas-
ing a few convincing examples. We noticed that students were
not always equipped to manage highly repetitive tasks, and their
typical reluctance towards the CLI often led them to dismiss some
of the most efficient tools available. This module presents a seem-
ingly loosely-connected group of topics: shell scripting using Bash,
regular expressions, and text processing using sed and awk. It is
important to note that the module’s goal is less to teach these spe-
cific tools/utilities than to illustrate how to solve certain complex
problems using an adapted (CLI-based) approach.

As mentioned above, the 10th and last week of instruction was
initially left open in case of unforeseen issues. Luckily, no major
issues happened during the first offering of the class, so we decided
to ask our first class of enrolled students which topic they would
like to study during their last week. The two proposed options
were to either extend one of the three existing modules (e.g., we
suggested extending the second module with a topic on profiling) or
introduce a fourth module about version control using Git, which
has become an indispensable tool for software development. The
majority of students chose the latter option.

4 COURSE CONTENTS
In this section, we describe the course implementation. There are
ten pairs of lectures and associated homework assignments cover-
ing the four modules presented in the previous section.

4.1 Module 1: Unix-like command-line
environments and tools

4.1.1 Week 1: Unix-like computer systems. Apart from the first
ten minutes, which are devoted to explaining the logistics of the
class by briefly going over the syllabus, the lecture is mostly meant
to describe various, convincing motivations for using Unix-like
environments, such as GNU/Linux based computer systems, and
their associated command-line utilities. For example, we show how
ubiquitous such systems have become in a vast range of devices,
from gaming consoles, to smartphones, to IoT devices, etc. We also
demonstrate how to perform a number of common software devel-
opment practices in the terminal in a very efficient way: e.g., com-
piling and running C code, automatically formatting code to a given
coding convention, installing software libraries using a package
manager, etc. Finally, we point out that an understanding of these
environments and tools is often a prerequisite to both academic
coursework and industrial software development.

For the associated homework assignment, students are given
two tutorials. The first tutorial describes how to remotely access
the Ubuntu-based machines provided by our CS department’s com-
puting lab using SSH. The second tutorial provides students with
instructions for installing and configuring an Ubuntu-based vir-
tual machine on their computers. The goal of this assignment is
twofold: (1) making sure that students have access to the environ-
ment required for this course, (2) encouraging them to start using

a Unix-like system on their own computer more regularly. The
autograded deliverables for this assignment are files produced by
a couple of scripts, showing that students were able to run these
scripts both on a lab machine and on their freshly installed virtual
machine.

4.1.2 Week 2: Command-line interface basics. The lecture gives an
overview of the command-interface interface (CLI) and its benefits.
In this overview, wemostly discuss the interaction between the user
and the filesystem. The lecture begins by explaining the structure
of the filesystem in Unix-like systems and the concept of a file
path (e.g., absolute vs. relative). We introduce a first set of utilities
used to navigate the filesystem (e.g., ls, cd, pwd), also taking the
opportunity to mention the concept of command-line options to
customize the behavior of these utilities (e.g., ls -a to print hidden
files). Next, we present a second set of utilities used to interact with
files (e.g., mv, cp, rm), and introduce the concept of aliases to create
useful shortcuts (e.g., alias rm=’rm -i’ to force a confirmation
before deleting files). We also briefly discuss different ways to access
files, either in the terminal directly (e.g., using cat or less) or via a
text editor (e.g., using Vim or Nano). Finally, the lecture emphasizes
that learning about the different utilities and their options can be
self-driven, by using the system reference manuals (i.e., man pages)
and with tools such as tldr that provide simplified help pages.

The homework assignment is an asynchronous quiz, counting
about 15 questions. Most of the questions provide students with a
plausible scenario related to using the CLI (e.g., assuming a given
file tree and the user’s current location in the tree), and ask them
to solve a relatively easy problem which often involves using one
of the CLI utilities presented in lecture (e.g., copying only updated
files from one location to another). Many questions require students
to use command-line options not presented in lecture, to encourage
them to refer to the related man pages. The quiz has no time limit,
and feedback is made available to students after the submission
deadline.

4.1.3 Week 3: Advanced command-line interface. While week 2
limits itself to ordinary CLI interactions users could otherwise per-
form using a graphical user interface (GUI), week 3 mainly focuses
on demonstrating more complex scenarios in which the CLI can
exceed the GUI. The lecture introduces the notion of input and out-
put streams and shows how commands’ streams can be redirected
from or to files, or redirected to other commands using pipes. We
also present a few utilities often found in piped commands, such
as head, grep, and cut. All of these concepts are illustrated via a
thorough demo that shows how a CSV-formatted gradebook can,
for example, be processed using a well-constructed piped command
to determine the frequency of each assigned letter grade. We end
the lecture by presenting a couple of administration-related topics,
such as sudo (e.g., to run commands with superuser privileges) and
the concept of job control (e.g., to run commands in the background
or forcefully stop them).

The homework assignment puts students in a credible scenario
for which using the CLI environment and tools is the most ap-
propriate approach. We first provide them with a labeled data set
of images from the Mars Curiosity rover mission [11]. They are
then asked to write and submit a few "one-liners" (single piped
commands), which are meant to process these images according to

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

469

some instructions. For example, the most complex one-liner that
students are requested to write should copy all of the images labeled
as "Martian horizon" (label number 9) to subdirectory horizons,
and can be written as: cat image_labels.txt | grep ’^9’ |
cut -d ’ ’ -f2 | xargs -I % cp % horizons/. This fully
autograded homework solidifies the understanding and usage of
piped commands and encourages students to discover additional
useful utilities by themselves, such as uniq and xargs.

4.2 Module 2: Software testing and debugging
4.2.1 Week 4: Software testing. The lecture describes methods for
evaluating the correctness of a program, which we define by its
input-output behavior (i.e., any input gives the expected output).
We first briefly mention the intuitive idea of manual testing, in
which the programmer manually enters a set of inputs and visually
verifies the corresponding outputs, but argue that thorough testing
quickly becomes too time-consuming. The lecture then focuses
on automated testing; that is, the idea of writing additional code
along with a predefined set of inputs and expected outputs to auto-
matically and efficiently test a program. The concept of automated
testing is refined by presenting unit testing, which helps provide
more details as to which component(s) in the tested program may
be faulty. Finally, the lecture introduces code coverage, which de-
termines the percentage of the tested program that is covered by a
test suite.

The homework assignment trains students’ software testing
skills via two commonly encountered programming use-cases. First,
students are provided with a precompiled program (as an object
file) for which they know the interface (the public functions are
documented in a header file) but do not have access to the code.
This program contains a few bugs, which students have to discover
by writing a test suite. This problem aims to teach students how
to determine test cases solely based on a specification. Second,
students are provided with the source code of an (assumed) bug-
free program and are tasked to write a test suite that reaches 100%
of code coverage. Through this problem, students learn how to
account for all possible execution paths when writing test cases.
The deliverables for this homework include both test suites and a
report listing the bugs students found in the first program.

4.2.2 Week 5: Debugging methodologies. While debugging is recog-
nized as a critical skill for software development, explicit strategies
and skills are rarely taught [12]. Our lecture briefly presents the
difficulties and pitfalls associated with debugging and details a
four-step problem-solving framework to encourage students to be
thoughtful and aware of their debugging practices. We adapted
the work from Li et al.[10] and coined our framework MINS, an
acronym where each letter represents a step within the debugging
process. (1) Construct aMental model of the faulty program. We
present creating flow charts as a tool for serializing the understand-
ing of a program. (2) Identify the bug. We explain how to observe
the program’s inconsistency and determine its actual and intended
behavior given a certain input. We suggest that students form "plain
english" descriptions of this behavioral difference and find other
inputs that create similar inconsistencies. (3) Narrow down the
problem scope. We show that students can progressively hypoth-
esize the bug’s location until finding its exact location by posing

answerable questions about the code and its behavioral inconsisten-
cies. (4) Solve the bug per se. This entails generating a solution and
verifying it. At the end, if the bug is still not resolved, the debugging
process can be reapplied. While small specific examples illustrated
each step of the presented MINS framework, the lecture ends with
a more comprehensive demo.

The associated homework assignment asks students to apply
MINS on two broken programs. First, based on the provided source
code, they have to generate flow charts representing each program’s
intended behavior. Then, they are instructed to write "bug reports"
that specify the intended behaviors and actual –erroneous– be-
haviors for each program, given certain inputs. In these reports,
students should also try to generalize these differences. Finally,
students can fix the bugs that they found in the broken programs.
While the two first deliverables (i.e., the flowcharts and bug reports)
are manually graded, the third deliverable (i.e., the fixed programs)
is autograded.

4.2.3 Week 6: Using the GNU debugger. The lecture is a hands-on
tutorial on the usage of the popular, terminal-based GNU Debugger
(GDB). After a brief introduction of the tool, the lecture focuses
on a couple of scenarios for which GDB can be helpful. For ex-
ample students can use the command backtrace to investigate
segmentation faults based on the detailed sequence of function
calls. We also remind students that using assertions to check the
argument passed to a function (such as NULL pointers in C) can
help prevent unintended bugs. For behavioral bugs not resulting in
segmentation faults, students are shown how and where to place
breakpoints and how to inspect and print variables. The rest of the
lecture presents many other useful GDB commands for carrying
out actions such as controlling the execution of the debugged pro-
gram, setting up watchpoints on specific variables, and printing
the values of variables using different representations.

The homework assignment comes in the form of a complete code
project that students need to debug. The project’s codebase is meant
to mimic an authentic project; the code is split over multiple files,
a Makefile performs the compilation, and there is a test suite that
uses sample data. The goal is to immerse students in a codebase that
they have not written but need to quickly apprehend, as is often the
case when working in industry. Students are invited to use GDB
in order to find and fix four bugs, one of which is a segmentation
fault, and all of which are revealed by the test suite. The expected
deliverable is a fully functional codebase, which is verified by our
autograder.

4.3 Module 3: Scripting
4.3.1 Week 7: Shell scripting. The lecture introduces students to
shell scripting using Bash. We consider a realistic scenario in which
a user wants to rename an extensive collection of JPEG images
(from IMGXXXX.jpg to imageXXXX.jpg), and we discuss three in-
cremental solutions. The first solution is for the user to manually
rename each file individually (e.g., using mv); we argue that it is
hardly a viable solution and that such repetitive tasks should be
automated. We then present the basics of shell scripting, such as
variables, string interpolation and substitution, wildcards, and for
loops, which enables us to present a much better second solution
based on a shell script. In the third and last step, we introduce more

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

470

shell scripting features, such as if and case statements, exit codes,
functions, and command-line arguments, and present a complete,
scalable third solution. This final script allows the user to specify
both the find and replace patterns, the list of files to rename, and
supports a couple of useful flags (e.g., ’-d’ to perform a dry-run
that does not rename any files). We conclude the lecture by briefly
mentioning ShellCheck [7], a static analysis tool that helps find
potential shell script bugs.

The homework assignment addresses an engaging, real-life sce-
nario. We provide students with a sample collection of music files1,
in which files are randomly named and encoded in various audio for-
mats. Students are tasked to write a shell script that (1) re-encodes
all of the music files in mp3 and (2) renames them according to the
pattern <artist>_<song>.mp3. A typical solution script includes
using most of the scripting features seen in lecture. It also requires
students to use some external tools (from the FFmpeg project [2]) for
the audio conversion and for extracting the artist and song names
from the music files. We also ask students to run ShellCheck on
their script and fix any reported errors. Student scripts are auto-
graded by running them against additional collections of music
files to ensure that the submitted scripts are generic.

4.3.2 Week 8: Regular expressions. The lecture introduces students
to regular expressions, a transversal topic to many of the course’s
themes, as regular expressions are often used with many CLI utili-
ties (e.g., grep or find) and are generally central to bash scripting
as well as text processing. To illustrate this introduction, we focus
on writing an email address validation script, a classic example of
string validation. This example enables us to present many of the
concepts involved in building simple but powerful regular expres-
sions: wildcards, character classes, quantifiers, boolean OR’ing, etc.
We also mention more advanced features, such as capture groups,
to show students how to extract substrings from an input. The
email address validator example is modified so that the three usual
fields composing a valid email address (i.e., username, second-level
domain, and top-level domain) can be extracted. The lecture ends
by briefly discussing the most common flavors of regular expres-
sions –Basic Regular Expressions, Extended Regular Expressions,
and Perl-Compatible Regular Expressions– and how they can be
used in various programming languages, from Python to C.

In the associated homework assignment, students are confronted
with a realistic problem in which they are asked to complete a bash
script that validates the billing information for all of the customers
of a fictitious company. This billing information is composed of
twelve different fields, such as names, addresses, credit card in-
formation, etc., which are commonly found in industrial customer
databases, and provide students with the opportunity to write many
regular expressions of various difficulties. Their submitted script is
thoroughly evaluated via an autograder that counts a total of fifty
different test cases.

4.3.3 Week 9: Text processing with sed & awk. The lecture gives an
introduction to scripted text processing using the popular tools sed
and awk. This introduction revolves around a realistic scenario in
which a professor wants to manipulate a CSV-formatted gradebook.
We show how sed can be used in lieu of grep to print selected

1Found on the Free Music Archive (https://freemusicarchive.org/)

entries, how it can insert new students in the gradebook or delete
existing ones, and how it can replace fields within an entry. We
then present a few of awk’s basic features, including variables,
conditionals, for loops, and functions. We bring it all together with
a simple awk script that can automatically compute each student’s
final grade, by dropping their lowest score from the gradebook and
averaging their other scores. The lecture ends by comparing grep,
sed, and awk, and the situations for which they each are best suited.

The homework assignment includes two problems, each illus-
trating a relevant use case for either sed or awk. The first problem is
to write a bash script that modifies an INI configuration file using
sed commands. The script can append, delete, or substitute fields
in the configuration file. The second problem is to write an awk
script that computes various tax information (e.g., average yearly
earnings, highest monthly earnings, etc.) for each employee of a
fictitious company, based on a CSV-formatted input file. All of the
submitted scripts are autograded using a set of auto-generated data.

4.4 Module 4: Version control
4.4.1 Week 10: Using Git for version control. The lecture is a demo-
based tutorial on the usage of Git, the most popular version control
system. After briefly introducing the tool and its history, the lecture
is split into three main sections. In the first section, we present
the basic file tracking features that Git offers. We explain how to
add new files to the repository, stage modified files and commit the
modifications to the repository, view the history, etc. In the second
section, we talk about the distributed model of Git and introduce
the push/pull operations. We also mention conflict resolutions. The
third and last section introduces branching. Small examples are
shown to illustrate during each section of the tutorial.

For this homework assignment, students are provided with a
git repository that contains a fictitious autograder across multiple
branches. Students first need to understand the repository’s struc-
ture, then merge all the branches into the main branch in the proper
order –and solve merge conflicts, if any–, and finally complete the
grading script in order to reconstitute a fully functional autograder.
The submitted git repository is autograded on two different aspects;
we check that the merge operations were successful by examining
the repository’s history and that the grading script was properly
completed. Students are also required to write answers to vari-
ous questions, which is meant to guide them through the different
phases. Their written answers are manually graded.

5 COURSE OFFERINGS AND FEEDBACK
Our course was developed in spring and fall of 2020 and offered
twice consecutively in the winter and spring quarters of 2021. Be-
cause of the pandemic, the course was offered online, mostly asyn-
chronously. The lecture videos were uploaded to the course website,
and students had continuous access to an online forum. The only
synchronous part of the class were office hours.

5.1 Student enrollment
For both offerings of the course, the enrollment was limited to 50
students, which is typical of elective courses at our university. Al-
though there was a short waiting list at the beginning of each quar-
ter, the enrollment usually settled at around 45 students, indicating

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

471

https://freemusicarchive.org/

that the student demand was met. The exact class composition for
each quarter is shown in Figure 1.

Class composition

Q
ua

rte
r

WQ21

SQ21

0% 25% 50% 75%

Freshman Sophmore Junior Senior Empty seats

Figure 1: Class composition per course offering

The course was intrinsically designed to be accessible as soon
as after CS1. We were surprised when the first offering counted
an overwhelming 90% of upper-division students, including 56%
of seniors alone. That said, it confirmed two of our initial assump-
tions which motivated the creation of this course: (1) students
recognize the importance of computer ecosystem literacy for their
professional success, especially as they are about to graduate, and
(2) students feel like this literacy is not being sufficiently covered
during their undergraduate education. Such a big share of upper-
division students is also likely due to the fact that they have priority
for registration.

To ensure that the second offering would be more balanced,
we delayed enrollment until the open registration period, during
which students of all levels have equal access to available courses.
While seniors still held the most significant enrollment, the share
of lower-division students dramatically increased (from 9% to 37%).

We are confident that as our course keeps being regularly offered,
the proportion of lower-division students will steadily increase and
soon become the majority, as we had initially expected.

5.2 Student feedback
At the end of each quarter, we asked students to complete an op-
tional survey, to gather feedback about their experience. Unfortu-
nately, the survey completion rate for the first class was relatively
low, with only about 28% of students responding. For the second
class, we gave a tiny amount of extra participation credits for com-
pleting the survey which boosted the completion rate to about 60%.
All the results shown in this subsection represent the cumulative
percentage across the two classes.

The main question that our survey aimed to investigate was
whether students had increased their knowledge and self-efficacy
in the topics covered by the course. We first asked them to rate how
familiar with these topics they felt prior to taking our course on a 4-
point Likert scale. As shown in Figure 2, the results unsurprisingly
matched our original February 2020 survey, which prompted the
creation of this course; for most topics, a majority of students
reported having a low level of familiarity or no familiarity at all.

As shown in Figure 3, we then asked them to rate their perceived
progress after having completed the course, also on a 4-point Likert
scale. The vast majority of students reported a high or moderate
level of progress across all the course topics.

In addition to evaluating students’ overall progress in the course
topics, we finally wanted to determine to what extent they left
the course with a growth mindset. We therefore asked students if

Course topics

R
ep

or
te

d
fa

m
ili

ar
ity

 w
ith

 to
pi

cs

0%

25%

50%

75%

100%

Basic Unix
commands

Testing Debugging Shell
scripting
(Bash)

Regular
expressions

Text
processing
(Sed&Awk)

Version
control (Git)

High familiarity Moderate familiarity Low familiarity No familiarity

Figure 2: Student familiarity with course topics prior to tak-
ing class

Course topics

R
ep

or
te

d
pr

og
re

ss
 w

ith
 to

pi
cs

0%

25%

50%

75%

100%

Basic Unix
commands

Testing Debugging Shell
scripting
(Bash)

Regular
expressions

Text
processing
(Sed&Awk)

Version
control (Git)

High progress Moderate progress Low progress No progress

Figure 3: Student progress on course topics after taking class

they had incorporated some of these new software development
practices into their workflow and if they had become more curious
about CLI environments and tools. As shown in Figure 4, the vast
majority of students reported that they had, for both metrics.

Incorporation of studied
topics into software

development workflow

Improved curiosity
about CLI environments

and tools

0% 25% 50% 75%

Strongly Disagree Disagree Agree Strongly Agree

Figure 4: Growth mindset after taking class

6 CONCLUSION AND FUTUREWORK
In this paper, we described "The Missing CS Class," a student-led
undergraduate course that covers topics aiming to increase stu-
dents’ computing ecosystem literacy and therefore helps reduce the
academia-industry gap. We provided a detailed description of the
course contents, which we hope others can adapt to their needs. The
very positive feedback we received from students indicates that we
accomplished our objectives of inspiring curiosity and encouraging
independent learning.

Our long-term objective is now for this course to continue as
a generational, student-led effort that can stand on its own after
we graduate. We are currently looking into a rolling approach in
which formerly enrolled students later become the ones teaching the
course. Finally, to benefit the community at large, we have published
all the lecture materials online at https://missing.cs.ucdavis.edu.

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

472

https://missing.cs.ucdavis.edu

REFERENCES
[1] Anish Athalye, Jon Gjengset, and Jose Javier Gonzalez. January 2019-20. The

Missing Semester of Your CS Education. Massachusetts Institute of Technology.
Retrieved 2021/08/11 from https://missing.csail.mit.edu/

[2] Fabrice Bellard et al. 2000. FFmpeg. Retrieved 2021/08/11 from https://www.
ffmpeg.org/

[3] Adam Blank, Josh Zimmerman, and Jake Zimmerman. Fall 2020. 07-131 – Great
Practical Ideas in CS. Carnegie Mellon Unversity. Retrieved 2021/08/11 from
https://www.cs.cmu.edu/~07131/f20/

[4] Michael Chang, Julie Zelenski, Chris Gregg, and Nick Troccoli. Spring 2021.
Assignment 0: Intro to Unix and C. In CS107: Computer Organization & Systems.
Stanford University. https://web.stanford.edu/class/archive/cs/cs107/cs107.1216/
assign0/ (2021/08/11).

[5] CC2020 Task Force. 2020. Computing Curricula 2020: Paradigms for Global Com-
puting Education. Association for Computing Machinery, New York, NY, USA.

[6] Paul Hilfinger. Spring 2021. Lab 6: Unit Testing and Integration Testing for
Enigma. In CS 61B: Data Structures. University of California, Berkeley. Retrieved
2021/08/11 from https://inst.eecs.berkeley.edu/~cs61b/sp20/materials/lab/lab6/
index.html

[7] Vidar Holen et al. 2013. ShellCheck - shell script analysis tool. Retrieved
2021/08/11 from https://www.shellcheck.net

[8] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[9] Tyson Kendon and Ben Stephenson. 2016. Unix Literacy for First-Year Computer
Science Students. In Proceedings of the 21st Western Canadian Conference on
Computing Education (Kamloops, BC, Canada) (WCCCE ’16). Association for
Computing Machinery, New York, NY, USA, Article 14, 4 pages. https://doi.org/
10.1145/2910925.2910930

[10] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero.
2019. Towards a Framework for Teaching Debugging. Association for Computing
Machinery, New York, NY, USA, 79–86. https://doi.org/10.1145/3286960.3286970

[11] Steven Lu and Kiri L. Wagstaff. 2020. MSL Curiosity Rover Images with Science
and Engineering Classes. https://doi.org/10.5281/zenodo.3892024

[12] Renée Mccauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: A review of the literature
from an educational perspective. Computer Science Education 18 (06 2008). https:
//doi.org/10.1080/08993400802114581

[13] Nick Parlante. Fall 2007-08. Unit Testing. In CS108: Object Oriented Programming.
Stanford University. https://web.stanford.edu/class/archive/cs/cs108/cs108.1082/
handouts/06UnitTesting.pdf (2021/08/11).

[14] Alex Radermacher and Gursimran Walia. 2013. Gaps between Industry Expec-
tations and the Abilities of Graduates. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 525–530.
https://doi.org/10.1145/2445196.2445351

[15] Alex Radermacher, Gursimran Walia, and Dean Knudson. 2014. Investigating the
Skill Gap between Graduating Students and Industry Expectations. In Companion
Proceedings of the 36th International Conference on Software Engineering (Hyder-
abad, India) (ICSE Companion 2014). Association for Computing Machinery, New
York, NY, USA, 291–300. https://doi.org/10.1145/2591062.2591159

[16] Alex D. Radermacher. 2012. Evaluating the gap between the skills and abilities of se-
nior undergraduate computer science students and the expectations of industry. Ph.D.
Dissertation. https://www.proquest.com/dissertations-theses/evaluating-gap-
between-skills-abilities-senior/docview/1018399283/se-2?accountid=14505
Copyright - Database copyright ProQuest LLC; ProQuest does not claim
copyright in the individual underlying works; Last updated - 2021-05-25.

[17] Vennila Ramalingam, Deborah LaBelle, and SusanWiedenbeck. 2004. Self-Efficacy
and Mental Models in Learning to Program. In Proceedings of the 9th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
(Leeds, United Kingdom) (ITiCSE ’04). Association for Computing Machinery,
New York, NY, USA, 171–175. https://doi.org/10.1145/1007996.1008042

[18] Nicholas Weaver. Spring 2019. Lab 0: Setup. In CS 61C: Great Ideas in Computer
Architecture (Machine Structures). Stanford University. https://inst.eecs.berkeley.
edu/~cs61c/sp19/labs/lab0.pdf (2021/08/11).

Session: Reducing Curricular Barriers SIGCSE ’22, March 3–5, 2022, Providence RI, USA

473

https://missing.csail.mit.edu/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.cs.cmu.edu/~07131/f20/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1216/assign0/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1216/assign0/
https://inst.eecs.berkeley.edu/~cs61b/sp20/materials/lab/lab6/index.html
https://inst.eecs.berkeley.edu/~cs61b/sp20/materials/lab/lab6/index.html
https://www.shellcheck.net
https://doi.org/10.1145/2910925.2910930
https://doi.org/10.1145/2910925.2910930
https://doi.org/10.1145/3286960.3286970
https://doi.org/10.5281/zenodo.3892024
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581
https://web.stanford.edu/class/archive/cs/cs108/cs108.1082/handouts/06UnitTesting.pdf
https://web.stanford.edu/class/archive/cs/cs108/cs108.1082/handouts/06UnitTesting.pdf
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1145/2591062.2591159
https://www.proquest.com/dissertations-theses/evaluating-gap-between-skills-abilities-senior/docview/1018399283/se-2?accountid=14505
https://www.proquest.com/dissertations-theses/evaluating-gap-between-skills-abilities-senior/docview/1018399283/se-2?accountid=14505
https://doi.org/10.1145/1007996.1008042
https://inst.eecs.berkeley.edu/~cs61c/sp19/labs/lab0.pdf
https://inst.eecs.berkeley.edu/~cs61c/sp19/labs/lab0.pdf

	Abstract
	1 Introduction
	2 Related work
	3 Design principles
	4 Course contents
	4.1 Module 1: Unix-like command-line environments and tools
	4.2 Module 2: Software testing and debugging
	4.3 Module 3: Scripting
	4.4 Module 4: Version control

	5 Course offerings and feedback
	5.1 Student enrollment
	5.2 Student feedback

	6 Conclusion and future work
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 47.09, 77.05 Width 254.30 Height 83.91 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 47.0928 77.0462 254.3009 83.9107

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

